日韩无码

学术报告
您现在的位置: 日韩无码 > 科学研究 > 学术报告 > 正文

20201029 庞宏奎 Fast approximate methods for the variable-order fractional advection-diffusion equation with a nonlinear source term

发布时间:2020-10-22 16:36    浏览次数:    来源:

题目:Fast approximate methods for the variable-order fractional advection-diffusion equation with a nonlinear source term

报告人:庞宏奎 副教授 (江苏师范大学)

时间:2020/10/29 (周四)17:00-18:00

地点:日韩无码 425会议室

摘要:In this talk, we consider the numerical solution of the variable-order(VO) fractional differential equations by the finite difference scheme. The resulting linear systems are dense without Toeplitz-like structure due to the variable-exponential kernel of VO operators. Observing the smooth property of the off-diagonal entries, we proposed an algorithm to approximate the dense coefficient matrices by exploiting the Lagrange interpolation with Chebyshev nodes. Theoretical analyses show that the approximate matrix can be constructed inO(kN) function evaluations and requires O(kN) storage, where k is the number of interpolation nodes. In addition, the approximate matrix-vector multiplication can be carried out in O(kNlogN) operations which promises us to solve the approximated systems quickly by the Krylov subspace method. Preconditioning technique is ulitized to accelerate the convergence. Furthermore, we also give the stability and error analysis of the new scheme. Numerical experiments are given to demonstrate the efficiency of the proposed method.

 

日韩无码-日韩人妻-日韩高清视频 版权所有©2017年    通讯地址:湖南省长沙市岳麓区麓山南路麓山门     邮编:410082     Email:[email protected]
域名备案信息:[www.rhwuma.com,www.hnu.cn/湘ICP备05000239号]      [hnu.cn 湘教QS3-200503-000481 rhwuma.com  湘教QS4-201312-010059]